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Summary 
 
In this chapter we review a particular case of graphs composed by river networks. These 
geophysical graphs are a particular kind of network. Given its physical properties, they 
do not have “loops” (technically “cycles”) and are therefore better designed by the term 
“trees”. Knowledge of these structures is nowadays extremely important especially for 
the increasing value that freshwater resources are assuming in our society. As graphs 
they are particularly important as a paradigmatic example of transportation graphs and 
for the possibility to define energy functionals to describe their evolution. 
 
1. Introduction 
 
What does an oak leaf have in common with a river?  
 
The answer is rather obvious: they both hinge upon a tree-like structure a situation 
common to the skeleton of a variety of complex networks. But why is this so?  
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A glance to Figure.1 provides an intuitive answer. Suppose we are faced with the 
problem of sending supply of water from a set of points (the black dots in the picture) 
lying within an extended area to a well localized final destination (the red dot in the 
lower left corner). Different strategies can be devised to this aim. In the first (see (A)) 
each point sends its share to a selected nearest-neighbor according to a well defined 
pattern (known as Hamiltonian walk in Statistical Physics). This is a globally efficient 
system, as the shipment is carried out according to an ordered path which does not allow 
for superposition that would lower the efficiency of the system. On the other hand, it is 
also locally inefficient as, for instance, water from point immediately north of the final 
destination could flow along a direct much shorter southward path without making a 
long detour. 
 
Consider now the opposite strategy (as sketched in (B)) where each point acts 
individually by choosing the shortest route. This makes the system locally efficient but 
globally highly costly as the total distance traveled by the entire system is much larger 
than in the previous case, due to the many superpositions (dashed as well as solid lines 
have been used in the figure (B) to enhance clarity). A reasonable trade-off between the 
two opposite strategies is provided by the tree-like structure shown in Figure (C) where 
each point attempts to find the shortest path but repetition is avoided through a 
hierarchical construction, so that a global efficiency can be achieved. A quantitative 
mathematical proof of the above statement can be obtained by showing that a tree-like 
structure is the one minimizing both the average individual path and the total traveled 
distance. Later on within this chapter we shall briefly touch upon these methods.  
 

 
 

Figure 1. Three examples of structures with a different efficiency in the transfer of 
water... 

 
A tree-like structure is then an efficient (the most efficient in fact!) structure to convey 
matter (or energy) from an extended source (the black points) to a single outlet (the red 
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point).  
 
This simple mechanism is particularly striking in the case of river networks in a 
drainage basin due to the following physical mechanism originatine the final structure: 
Gravity drives water downhill along the steepest path; as water flows, landscape is 
eroded and its morphology then evolves until a very unstable situation characterized by 
large local slope is reached; a sedimentation process then occurs reporting the local 
slope to a smaller value (in general different from the original one) so that water can 
again flow along a new path and process iterates until a steady state is reached. 
 
In this respect, a river network is a two-dimensional projection of the three-dimensional 
tree-like structure given by computing the steepest descent on a rugged surface. The 
above mechanism has far reaching consequences which are of paramount importance 
for geophysical science as will be further discussed below. The breadth of knowledge 
involved in the study of river networks, however, far exceeds hydrology touching upon 
mathematical aspect of graph theory (mentioned elsewhere in this book) and theoretical 
aspects characteristic of statistical physics such as scaling theories and critical 
exponents. While the former has been more or less always been present in the subject, 
the latter has crept into the field only very recently when multidisciplinary teams formed 
by hydrogeologists and statistical physicists have teamed up to tackle this very 
fascinating topic [see e.g. Rodriguez-Iturbe&Rinaldo 1997]. 
 
This chapter was written with the explicit objective of avoiding technicalities and to 
provide an intuitive picture of this topic which could be of some interest to non-experts. 
As such, it hinges mostly on personal work carried out over the past and it does not have 
the pretency of being an exhaustive review of of the field. 
 
2. Drainage Basins, River Networks and Digital Elevation Map (DEM) 
 
River basins are the fundamental natural system hydrological phenomena and a major 
topic in the more general field of geomorphology. Transport through river channels has 
also major consequences for public safety, management of water resources, and 
environmental sustainability. 
 
We begin this Section by remarking that a river system may be divided in three distinct 
regions called the production zone, the transportation (or transfer) zone and the delivery 
(or deposition) zone. Properties of these three regions are different and require different 
approaches. What we will be discussing in this chapter is the production zone, and this 
will be identified hereafter as a river basin. 
 
A drainage basin of a river is defined as the part of the territory where all the rainfall is 
collected by the same river and transferred to one or more outlets. A river network is 
composed of the collection of all the paths formed by every tributary of the main river 
in its drainage basin. Clearly, the formed paths of the network strongly depend upon the 
morphology of the landscape on which the river flows; this in turn is influenced by 
various external agents (rain, sedimentation, erosional process etc etc) and by the flow 
of the river itself, thus creating a feedback mechanism in which the direction of the flow 
is dictated by the landscape morphology but the former also affects the latter in a non-
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trivial way. 
 
Hydrogeologists have devised a very clever technique from satellite images to represent 
river networks, called digital elevation map (DEM) that allows us to determine the 
average height of areas (pixels) of the order 10-2 km2. The method is based on the 
phenomenological evidence that water falling from one site follows the steepest descent 
between those available. From one satellite photograph the zone is divided into portions 
whose linear size is about 20 - 30 m and each of these regions is treated as a single 
point. Then an average height h  is assigned to these coarse-grained sites (from a 
satellite it is easy to compute the elevation field of a region). The network is built using 
the elevation field and starting from the highest mountain according to the steepest 
descent rule as shown in Figure 2. Essentially then, a river network is a two-dimensional 
representation of the three-dimensional landscape morphology, not necessarily 
(although frequently) related with the actual river flowing on that landscape in reality. 
 

 
 

Figure 2. A cartoon of the Digital Elevation Map procedure and the resulting river flow. 
 
By DEM techniques, systems with sizes varying from hundreds of meters to thousands 
of kilometers can be observed, thereby spanning more than four orders of magnitude. 
Below few hundreds of meters local morphology obviously starts to play a very relevant 
role whereas above some thousands of kilometers this description is inadequate as 
phenomena characteristic of continental length scales set in. Yet, within this very large 
window and irrespective of the geographical locations, distinct river basins present a 
common tree-like structure with many common properties that we are going to describe 
next. 
 
3. Scale Invariance and Fractals 
 
Consider the river network shown in Figure 3 as obtained by a real river One 
immediately notices the main (i.e the longest) stream spanning the basin from one side 
to the other, all smaller streams being tributary to this main one.  
 
As the thickness of each line in the Figure represents the total amount of water flowing 
along that stream, the main stream is obviously also the one transporting the largest 
amount of water. A closer look, on the other hand, identifies a set of smaller streams 
more or less of the same order of magnitude which can be reckoned as the main 
tributaries.  
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Each of them has its own drainage basins and could be regarded as the main stream of 
smaller basins, at a smaller length scale. This observation could be iterated many times 
until one reaches the smallest stream. The system is then self-similar in the sense that all 
parts statistically resembles identical one another within their own length scale: this is 
the main property of a fractal, so a river network does have fractal structure. 
 
One possible way for making this feature more quantitatively explicit is the so-called 
Horton-Strahler ordering. The main idea behind this ordering scheme is very intuitive. 
Think about two small creeks roughly of equal size which at some point merge together. 
It is natural to rename the larger creek originating from there with a new name. 
 

 
 

Figure 3. A real river network obtained from the DEM technique (courtesy of Riccardo 
Rigon). 

 
On the other hand, after the confluence of the Nile with a small tributary, the 
downstream resulting river is effectively of the same Nile size, as the contribution of the 
small tributary can be considered as negligible, and it is again natural to maintain the 
Nile denomination.This scheme is patterned after what geographists have done for 
decades to denote the real rivers.  
 
With reference to Figure 4 we define the following rules: 
• Channels with no tributaries (that originate at a source), are defined to be first-order 

streams; 
• When two streams of order i  join, a stream of order 1j +  is created; 
• When two streams of different order join, the channel immediately downstream has 

the higher order of the two combining streams. 
 
An example of this ordering scheme, called Horton-Strahler ordering in river basins 
geomorphology, is depicted in Figure 4 where the thickness of the line is proportional to 
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the order of the stream. 
 

 
 

Figure 4. The structure of rivers according to the Horton-Strahler ordering 
 
Define ( )N i  the number of streams of order i  and ( )L i  the average length of a 
stream of order i , one introduce the branching and length ratios 
 

B

L

( )
( 1)
( 1)

( )

N iR
N i
L iR

L i

⎧ =⎪ +⎪
⎨ +⎪ =
⎪⎩

 

 
It has been observed (by Horton) that for a very large class of river basins, B3 5R≤ ≤  
and L1.5 3.5R≤ ≤ . 
 
The self-similarity of basins and rivers can then be translated into a hierarchical 
structure of relative sizes among different tributaries as described by the above scheme, 
where different numerical indices (branching ratio BR , length ratio LR and other 
quantities) provide a quantitative measure of its self-similarity character. Remarkably, it 
turns out that for a very large range of river sizes, from few meters to hundred of 
kilometers, those indices are more or less identical one another, a clear indication of the 
self-similarity of the river basins. 
 
They can also be computed exactly in a deterministic structure denoted as Peano river 
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network (see Figure 5). With much more mathematical effort, they can also be estimated 
in a random tree-like structure known as spanning tree (for a construction of the Peano 
river network see Figure 6) 
 

 
 

Figure 5. The Peano river network. 
 

 
 

Figure 6. Different steps of construction of a Peano Basin 
 

We can translate this bit of information still in another way. As usual in science, it 
proves convenient to identify the relevant length scales of the problem. It is apparent 
from the figure that the drainage basin has a very high aspect ratio, that is rather 
elongated. This means that there are two different length scales L and L⊥ along the 
parallel and perpendicular direction, respectively, their product being approximately 
equal to the area A of the drainage basin, but with ||L L⊥> . 
 
One of the fundamental laws known to the hydrogeologists is called Hack's law (see Fig 
6) and it states that,  
 

~ hL A , 
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where 0.6h ≈  for all river basins in the wide window range mentioned earlier. This 
“universality'” in the value of h is still another manifestation of the self-similarity of the 
system. Note that a value 0.5h ≈  would correspond to a symmetrical basin with the 
two length scales approximately equal, so 0.5h >  is a representation of the fact that 

||L L⊥>  (as shown in Figure7). Very large basins ( 4
|| 10 kmL > ) are observed to be 

rather more symmetric so that a value of h  much closer to 0.5 is actually observed.  
 

 
 

Figure 7. The various lengths one can define in a river basin. 
 
Hack's law is an empirical law derived from field observations. Other similar laws have 
been devised by hydrologists over the years: they have proven to be extremely useful to 
rationalize theories aiming to explain the observed behavior on the basis of fundamental 
principles of engineering fluid and soil mechanics. However the universal behavior of 
the topological indices and laws, such as Hack's law, strongly suggests that the actual 
details of the local morphology and fluid properties should not play a fundamental role, 
the main observed features being independent of them.  
 
This situation here is similar to what is found in statistical physics of non-equilibrium 
critical phenomena.  
 
- 
- 
- 
 

 
TO ACCESS ALL THE 26 PAGES OF THIS CHAPTER,  
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx 

 

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-200-06


UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

COMPLEX NETWORKS - River Networks - Achille Giacometti 
 

©Encyclopedia of Life Support Systems (EOLSS) 
 

Bibliography 
 
Anderson P.W. (1972) “More is Different” Science, 177, 393-396. [The seminal paper on Complexity 
theory]. 

Bak P., C. Tang and K. Wiesenfeld, (1997) “Self-Organizing Criticality: An explanation of the 1/f noise” 
Phys. Rev. Lett. 59, 381. [The seminal paper on SOC] 

Banavar J.R., F. Colaiori, A. Flammini, A. Giacometti, A. Maritan and A. Rinaldo, (1997) “Sculpting a 
Fractal River Basin”, Phys. Rev. Lett. 70, 822. [Some analytical results on Optimal Channel Networks] 

Barabasi A.-L., H.E. Stanley, (1995) “Fractal Concepts in Surface Growth”, Cambridge University Press. 
[A textbook on self-similar phenomena]  

Caldarelli G., A. Giacometti, A. Maritan, I. Rodriguez-Iturbe, (1997) “Randomly pinned landscape 
evolution”, Phys. Rev. 55, R48665. [A paper on Self-Organized Critical model for network evolution] 

Colaiori F., A. Flammini, A. Maritan and J.R. Banavar, (1996) “Analytical and Numerical Studies of 
Optimal Channel Networks”, Phys. Rev. E 55, 1298. [A review paper on Optimal Channel Networks] 

Feynman R. P., R. B. Leighton and M. Sand (1965) “The Feynman Lectures of Physics” Vol. 1-3, 
Addison Wesley. [Textbook on Physics] 

Giacometti A., (2000) “Local minimal energy landscape in river networks”, Phys. Rev. E 62, 6043. [River 
networks dynamics from minimization principles] 

Giacometti A., A. Diaz-Guilera, (1998) “Dynamical properties of the Zhang model of self-organized 
criticality”, Phys. Rev. E, 58, 247. [some analytical results on SOC] 

Giacometti A., A. Maritan and J.R. Banavar, (1995) “Continuum Model for River Networks”, Phys. Rev. 
Lett. 75, 577. [Some analytical results in River network theory]  

Goldenfeld N. and L. P. Kadanoff, (1999) “Simple lessons from Complexity”, Science 284, 87. [A review 
on the complexity theory] 

Goldenfeld N., (1993) “Lectures on Phase Transitions and the Renormalization Group” ,Addison-
Wesley, New York. [Textbook on Renormalization Group] 

Kardar M. (2007) “Statistical Physics of Particles” and “Statistical Physcs of Fields” Cambridge 
University Press. [A textbook on Statistical physics] 

Kardar M., G. Parisi, and Y.-C. Zhang (1986) “Dynamical scaling of growing interfaces” , Phys. Rev. 
Lett. 56, 889. [The seminal paper on self-affine growth processes] 

Maritan A., A. Rinaldo, R. Rigon, A. Giacometti and I. Rodriguez-Iturbe, (1996) “Scaling Laws for river 
networks”, Phys. Rev. E 53, 1510. [Some analytical results on the statistical properties of river networks] 

Rodriguez-Iturbe I. and A. Rinaldo, (1997)  “Fractal River Basins: Chance and Self-Organization” 
Cambridge University Press, Cambridge England. [A textbook on River Networks] 
 
Biographical Sketch 
 
Achille Giacometti is currently Associate Professor of Condensed Matter Physics at the University Ca’ 
Foscari of Venice.,He studied in Padua with Amos Maritan and Attilio Stella and then moved to Purdue 
University (USA) for his Ph.D.  He then held post-doctoral positions at IFF-FZ in Julich (Germany) and 
at SISSA/ISAS in Trieste.  He has worked on several topics in Statistical Physics including growth 
processes, Self-Organized Criticality and River Networks. 
 
 
 
 


